sexta-feira, 5 de junho de 2015

http://www.researchgate.net/…/…/54f3690c0cf299c8d9e50aad.pdf
link do artigo da Nutrição Brasil sobre AGEs
Danos proteicos durante o processamento do leite e sua repercussão na saúde

Kívia Queiroz de Andrade*, Raphaela Costa Ferreira*, Luci Tojal e Seara, M.Sc.**
Nutrição Brasil - Janeiro/Fevereiro 2014;13(1)

Resumo A busca de marcadores que avaliam a qualidade proteica do leite tem levado pesquisadores a procurar compostos que expressem mudanças nos seus nutrientes, servindo como uma prevenção das doenças crônicas não transmissíveis (DCNTs). O objetivo desse trabalho foi revisar o conhecimento atual sobre a possibilidade de formação de compostos, tais como: furosina (FUR), lisinoalanina (LAL) e carboximetillisina (CML), que representam um dano na qualidade proteica do leite processado com repercussões na saúde do indivíduo. Apesar do leite conter nutrientes em quantidades consideráveis, a indústria adiciona ferro e vitamina C com o objetivo de tornar o leite mais completo. Essa suplementação, aliada ao parâmetro tempo/temperatura, favorece a ocorrência de alterações físico-químicas, tais como interações lipídio-proteína e proteína-proteína, e uma gama de reações químicas, incluindo a reação de Maillard, que acarreta diminuição do valor nutritivo do leite e formação de compostos com atividade pró-oxidante e pró-inflamatória, que levam ao desenvolvimento de doenças crônicas tais como diabetes e doenças gastrointestinais. 

domingo, 27 de abril de 2014

Advanced glycation end products (AGE) and diabetes: cause, effect, or both?

Apesar de terapias novas e eficazes drogas, a resistência à insulina (RI), diabetes mellitus tipo 2 ( DM2 ) e suas complicações permanecem como grandes desafios médicos. Aceita-se que a RI, muitas vezes associada com o excesso de nutrição e obesidade, os resultados de estresse oxidante cronicamente elevada ( OS) e inflamação crônica. Menos reconhecido é que uma das principais causas para essa inflamação é o consumo excessivo de produtos de glicação avançada (AGEs) com a dieta ocidental padrão. AGEs , que foram em grande parte pensado como derivados oxidativos decorrentes da hiperglicemia diabética, são cada vez mais vistos como um risco potencial para a lesão das células- β das ilhotas, IR periférica e diabetes. Aqui nós discutimos as relações entre AGEs exógenos, inflamação crônica, IR, e diabetes tipo 2 . Propomos que a pressão AGE oxidante exógeno a depleção crónica de mecanismos de defesa inatos é um factor importante, o que aumenta a susceptibilidade à inflamação, IR, DM2 e suas complicações. Finalmente, uma revisão de evidências sobre restrição dietética AGE como uma intervenção não farmacológica, o que reduz de forma eficaz os AGEs, restaura as defesas inatas e melhora IR, assim , oferecendo novas perspectivas sobre a etiologia diabetes e terapia.

 2014 Jan;14(1):453. doi: 10.1007/s11892-013-0453-1.

Advanced glycation end products (AGE) and diabetes: cause, effect, or both?

http://www.ncbi.nlm.nih.gov/pubmed/24292971

domingo, 12 de janeiro de 2014

PRODUTOS DE GLICAÇÃO AVANÇADA A RESTRIÇÃO DIETÉTICA DESTES COMPOSTOS TRAZ BENEFÍCIOS PARA A SAÚDE?

http://www.unileverhealthinstitute.com.br/artigo/produtos-de-glicacao-avancada

Produtos de glicação avançada (AGEs) são compostos tóxicos formados por meio de uma reação não enzimática entre açúcares redutores e proteínas, fosfolipídeos ou ácidos nucleicos, conhecida como reação de Maillard. Isto ocorre como parte do metabolismo normal, porém, quando produzidos em excesso, os AGEs promovem estresse oxidativo, inflamação e alteração na função de proteínas, tornando-se patogênicos. Carboximetilisina (CML) e derivados do metilglioxal (MG) estão entre os mais estudados1.
 
Além da produção endógena, estas glicotoxinas também estão presentes nos alimentos, sendo o processamento (temperatura e método de cocção) o principal responsável pela formação de AGEs nos alimentos. A exposição ao calor (alimentos grelhados, fritos, assados e churrasco) gera mais AGEs do que a cocção em temperaturas mais baixas e na presença de água (alimentos cozidos em água ou no vapor)2. Por exemplo, amostras de peito de frango frito apresentam 73.896 U/g de AGEs, enquanto este valor em amostras cozidas é de 11.236 U/g3.
 
Durante muito tempo o papel destes compostos nos processos de saúde e doença foi ignorado, pois se acreditava que eles praticamente não eram absorvidos no trato gastrointestinal. Entretanto, atualmente sabe-se que aproximadamente 10 a 30% dos AGEs consumidos são absorvidos, com um terço da quantidade ingerida sendo excretada na urina e nas fezes. Assim, as concentrações plasmáticas parecem sofrer influência direta do consumo alimentar e da capacidade fisiológica de eliminação destas substâncias4.
 
As consequências negativas à saúde pelo aumento dos AGEs incluem inflamação, aumento da rigidez arterial, disfunção endotelial e aterosclerose. A glicação da LDL aumenta sua susceptibilidade à oxidação e a torna ainda mais aterogênica5. Há evidências de que os AGEs favoreçam a ocorrência de complicações do diabetes, doenças renais e cardiovasculares5.
 
Luévano-Contreras et al. (2013)6 investigaram o efeito da restrição dietética de AGEs sobre parâmetros inflamatórios (TNF-α e proteína C-reativa) e relacionados ao estresse oxidativo (malondialdeído) em pacientes com diabetes mellitus tipo 2. Para isso, conduziram um estudo prospectivo randomizado no qual os indivíduos receberam durante seis semanas uma dieta convencional ou pobre em AGEs. A intervenção levou a uma redução estatisticamente significante nas concentrações séricas de AGEs, TNF-α e malondialdeído. 
 
Kellow e Savige (2013)7 realizaram uma revisão sistemática para avaliar o efeito da restrição dietética de AGEs em indivíduos saudáveis ou com diabetes ou doença renal, incluindo 12 trabalhos. Destes, apenas cinco (42%) foram considerados de alta qualidade metodológica. Embora tenha sido encontrado que a diminuição da ingestão promove menor inflamação, resistência à insulina e modificação oxidativa da LDL, a baixa qualidade das pesquisas torna os achados inconclusivos. Os autores afirmam que ainda não há dados suficientes para recomendar a restrição de AGEs, até que mais ensaios clínicos bem conduzidos e com grandes amostras tenham sido realizados para fortalecer estas evidências.
 
De qualquer forma, uma dieta com menor quantidade destas glicotoxinas pode ser alcançada pelo consumo de frutas, hortaliças, leguminosas, laticínios desnatados, carnes magras e peixes, o que é condizente com a maioria das diretrizes e guias de alimentação saudável. Além disso, os métodos de cocção em água ou vapor também são mais adequados do que frituras, por exemplo, e podem ser recomendados em conjunto à adoção de hábitos de vida como cessação do tabagismo e prática regular de atividade física1.
 
Referências:
1) Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc 2010; 110(6): 911-16.e12
 
2) Uribarri J, Cai W, Sandu O, et al. Diet-derived advanced glycation end products are major contributors to the body’s AGE pool and induce inflammation in healthy subjects. Ann NY Acad Sci 2005; 1043: 461–466.
 
3) Barbosa JHP, de Oliveira SL, Tojal L. Produtos da glicação avançada dietéticos e as complicações crônicas do diabetes. Rev Nutrição 2009; 22(1): 113-124.
 
4) Kellow NJ, Savige GS. Dietary advanced glycation end-product restriction for the attenuation of insulin resistance, oxidative stress and endothelial dysfunction: a systematic review. Eur J Clin Nutr 2013; 67(3): 239-248.
 
5) Nedić O, Rattan SI, Grune T, et al. Molecular effects of advanced glycation end products on cell signalling pathways, ageing and pathophysiology. Free Radic Res 2013; 47 Suppl 1: 28-38.
 
6) Luévano-Contreras C, Garay-Sevilla ME, Wrobel K, et al. Dietary advanced glycation end products restriction diminishes inflammation markers and oxidative stress in patients with type 2 diabetes mellitus. J Clin Biochem Nutr 2013; 52(1): 22-26.
 
7) Kellow NJ, Savige GS. Dietary advanced glycation end-product restriction for the attenuation of insulin resistance, oxidative stress and endothelial dysfunction: a systematic review. Eur J Clin Nutr 2013; 67(3): 239-248.

sábado, 12 de outubro de 2013

Advanced glycation end products accelerate rat vascular calcification through RAGE/oxidative stress

Qin Wei1Xiaomei Ren2Yibo Jiang3Hong Jin1Naifeng Liu1* and Jie Li2


1Department & Institute of Cardiology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P. R. China
2Department of Geratology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P. R. China
3Department of Cardiology, Taixing Hospital affiliated with Yangzhou University, Jiangsu 225400, P. R. China
For all author emails, please log on.


BMC Cardiovascular Disorders 2013, 13:13 doi:10.1186/1471-2261-13-13

The electronic version of this article is the complete one and can be found online at: http://www.biomedcentral.com/1471-2261/13/13

Received:31 July 2012
Accepted:19 February 2013
Published:5 March 2013
© 2013 Wei et al.; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Abstract

Background

Arterial media calcification (AMC) is highly prevalent and is a major cause of morbidity, mortality, stroke and amputation in patients with diabetes mellitus (DM). Previous research suggests that advanced glycation end products (AGEs) are responsible for vascular calcification in diabetic patients. The potential link between oxidative stress and AGEs-induced vascular calcification, however, has not been examined.

Methods

Male Wistar rats received a high fat diet for 8 weeks followed by a single dose of streptozotocin to induce DM (DM). Calcification was induced with Vitamin D3 and nicotine (VDN). We started VDN treatment at 1 week after the initial streptozotocin injection (DM+VDN). Age-matched rats were used as controls (CON). Metabolic parameters, aortic calcium content, alkaline phosphatase (ALP) protein, malondialdehyde (MDA) content, Cu/Zn superoxide dismutase (SOD) activity, aorta receptor for advanced glycation end products (RAGE) and aorta AGEs levels were measured. In vitro, vascular smooth muscle cells (VSMCs) were cultured with AGEs in DMEM containing 10 mmol·L-1 ß -glycerophosphate (ß-GP). Calcium content and ALP activity were used to identify osteoblastic differentiation and mineralization. Western blots were used to examine protein expression of Cu/Zn SOD, NADPH oxidase Nox1 and RAGE. In addition, the intracellular reactive oxygen species (ROS) generation was evaluated using fluorescent techniques with dihydroethidine (DHE) method.

Results

The DM+VDN group showed a significant increase in aortic calcium content, levels of aorta AGEs, MDA content, ALP protein levels and RAGE expression, although Cu/Zn SOD activity decreased significantly. In vitro, enhanced Nox1, RAGE expression as well as the production of intracellular superoxide anions, and reduced expression of Cu/Zn SOD induced by AGEs were attenuated by the anti-RAGE antibody or a ROS inhibitor. Furthermore, the AGEs-stimulated ROS increase was also significantly inhibited by a SOD mimetic. Increased ALP activity and calcium deposition were also inhibited markedly by the ROS inhibitor and the anti-RAGE antibody.

Conclusions

These results suggest that AGEs enhance vascular calcification partly through a RAGE/oxidative stress pathway.
Keywords: 
Diabetes mellitus; Advanced glycation end products; Vascular smooth muscle cells; Calcification; Oxidative stress
http://www.biomedcentral.com/1471-2261/13/13

Produtos de glicação avançada (AGEs) são compostos tóxicos formados por meio de uma reação não enzimática entre açúcares redutores e proteínas, fosfolipídeos ou ácidos nucleicos, conhecida como reação de Maillard. Isto ocorre como parte do metabolismo normal, porém, quando produzidos em excesso, os AGEs promovem estresse oxidativo, inflamação e alteração na função de proteínas, tornando-se patogênicos. Carboximetilisina (CML) e derivados do metilglioxal (MG) estão entre os mais estudados1.
Além da produção endógena, estas glicotoxinas também estão presentes nos alimentos, sendo o processamento (temperatura e método de cocção) o principal responsável pela formação de AGEs nos alimentos. A exposição ao calor (alimentos grelhados, fritos, assados e churrasco) gera mais AGEs do que a cocção em temperaturas mais baixas e na presença de água (alimentos cozidos em água ou no vapor)2. Por exemplo, amostras de peito de frango frito apresentam 73.896 U/g de AGEs, enquanto este valor em amostras cozidas é de 11.236 U/g3.
Durante muito tempo o papel destes compostos nos processos de saúde e doença foi ignorado, pois se acreditava que eles praticamente não eram absorvidos no trato gastrointestinal. Entretanto, atualmente sabe-se que aproximadamente 10 a 30% dos AGEs consumidos são absorvidos, com um terço da quantidade ingerida sendo excretada na urina e nas fezes. Assim, as concentrações plasmáticas parecem sofrer influência direta do consumo alimentar e da capacidade fisiológica de eliminação destas substâncias4.
As consequências negativas à saúde pelo aumento dos AGEs incluem inflamação, aumento da rigidez arterial, disfunção endotelial e aterosclerose. A glicação da LDL aumenta sua susceptibilidade à oxidação e a torna ainda mais aterogênica5. Há evidências de que os AGEs favoreçam a ocorrência de complicações do diabetes, doenças renais e cardiovasculares5.
Luévano-Contreras et al. (2013)6 investigaram o efeito da restrição dietética de AGEs sobre parâmetros inflamatórios (TNF-α e proteína C-reativa) e relacionados ao estresse oxidativo (malondialdeído) em pacientes com diabetes mellitus tipo 2. Para isso, conduziram um estudo prospectivo randomizado no qual os indivíduos receberam durante seis semanas uma dieta convencional ou pobre em AGEs. A intervenção levou a uma redução estatisticamente significante nas concentrações séricas de AGEs, TNF-α e malondialdeído. 
Kellow e Savige (2013)7 realizaram uma revisão sistemática para avaliar o efeito da restrição dietética de AGEs em indivíduos saudáveis ou com diabetes ou doença renal, incluindo 12 trabalhos. Destes, apenas cinco (42%) foram considerados de alta qualidade metodológica. Embora tenha sido encontrado que a diminuição da ingestão promove menor inflamação, resistência à insulina e modificação oxidativa da LDL, a baixa qualidade das pesquisas torna os achados inconclusivos. Os autores afirmam que ainda não há dados suficientes para recomendar a restrição de AGEs, até que mais ensaios clínicos bem conduzidos e com grandes amostras tenham sido realizados para fortalecer estas evidências.
De qualquer forma, uma dieta com menor quantidade destas glicotoxinas pode ser alcançada pelo consumo de frutas, hortaliças, leguminosas, laticínios desnatados, carnes magras e peixes, o que é condizente com a maioria das diretrizes e guias de alimentação saudável. Além disso, os métodos de cocção em água ou vapor também são mais adequados do que frituras, por exemplo, e podem ser recomendados em conjunto à adoção de hábitos de vida como cessação do tabagismo e prática regular de atividade física1.
Referências:
1) Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc 2010; 110(6): 911-16.e12
2) Uribarri J, Cai W, Sandu O, et al. Diet-derived advanced glycation end products are major contributors to the body’s AGE pool and induce inflammation in healthy subjects. Ann NY Acad Sci 2005; 1043: 461–466.
3) Barbosa JHP, de Oliveira SL, Tojal L. Produtos da glicação avançada dietéticos e as complicações crônicas do diabetes. Rev Nutrição 2009; 22(1): 113-124.
4) Kellow NJ, Savige GS. Dietary advanced glycation end-product restriction for the attenuation of insulin resistance, oxidative stress and endothelial dysfunction: a systematic review. Eur J Clin Nutr 2013; 67(3): 239-248.
5) Nedić O, Rattan SI, Grune T, et al. Molecular effects of advanced glycation end products on cell signalling pathways, ageing and pathophysiology. Free Radic Res 2013; 47 Suppl 1: 28-38.
6) Luévano-Contreras C, Garay-Sevilla ME, Wrobel K, et al. Dietary advanced glycation end products restriction diminishes inflammation markers and oxidative stress in patients with type 2 diabetes mellitus. J Clin Biochem Nutr 2013; 52(1): 22-26.
7) Kellow NJ, Savige GS. Dietary advanced glycation end-product restriction for the attenuation of insulin resistance, oxidative stress and endothelial dysfunction: a systematic review. Eur J Clin Nutr 2013; 67(3): 239-248.
http://www.unileverhealthinstitute.com.br/artigo/produtos-de-glicacao-avancada 
http://www.nature.com/ejcn/journal/v67/n3/full/ejcn2012220a.html
Neste endereço encontra-se o artigo na íntegra.

Review

European Journal of Clinical Nutrition (2013) 67, 239–248; doi:10.1038/ejcn.2012.220; published online 30 January 2013

Dietary advanced glycation end-product restriction for the attenuation of insulin resistance, oxidative stress and endothelial dysfunction: a systematic review

N J Kellow1 and G S Savige1
1Department of Rural & Indigenous Health, Monash University, Moe, Victoria, Australia
Correspondence: NJ Kellow, Department of Rural & Indigenous Health, Monash University, PO Box 975, Moe, Victoria 3833, Australia. E-mail:nicolekellow@live.com.au
Received 12 November 2012; Revised 19 December 2012; Accepted 21 December 2012
Advance online publication 30 January 2013
Top

Abstract

The benefits of advanced glycation end-product (AGE)-restricted diets in humans are unclear. This review aimed to determine the effect of dietary AGE restriction on the inflammatory profiles of healthy adults and adults with diabetes or renal failure. Eight computer databases were searched for controlled feeding trials published in English between January 1997 and December 2012. Human trials were included if at least one group received an AGE-restricted dietary intervention. A total of 12 trials reporting on 289 participants were included in the review. Five trials (42%) were of high methodological quality. Meta-analysis of two long-term (16 week) trials provided evidence favoring an AGE-restricted diet for the reduction of 8-isoprostanes (standardized mean difference 0.9; 95% confidence interval (CI): 0.3–1.5) and tumor necrosis factor-α (1.3; 95% CI: 0.6–1.9) in healthy adults. Intermediate-term dietary AGE restriction in adults with chronic renal failure reduced serum VCAM-1 (0.9; 95% CI: 0.1–1.7). Individual trials provided some evidence that long-term dietary AGE restriction reduces HOMA-IR (1.4; 95% CI: 0.3–2.6) and AGE-modified low-density lipoprotein (2.7; 95% CI: 1.6–3.9) in adults with type 2 diabetes. Generalisability is limited, as 75% of studies were of less than 6 weeks duration and more than half were of low methodological quality. Evidence quality ranged from low to very low, limiting the conclusions that can be drawn from this review. There is currently insufficient evidence to recommend dietary AGE restriction for the alleviation of the proinflammatory milieu in healthy individuals and patients with diabetes or renal failure. Additional long-term high-quality RCTs with larger sample sizes measuring patient-important outcomes are required to strengthen the evidence supporting the effects of AGE-restricted diets.

Keywords: 

systematic review; advanced glycation end product; dietary AGE restriction; diabetes; inflammation; humans

Advanced Glycation Endproducts for 4 weeks Improves Insulin Sensitivity in Overweight Women

  1. Susanne Bügel, PhD.1
+Author Affiliations
  1. 1Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Denmark.
  2. 2Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
  3. 3Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
  4. 4NNF Center for Basic Metabolic Research, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
  5. 5Baker IDI Heart and Diabetes Institute, Melbourne, Australia.
  6. 6Steno Diabetes Center, Copenhagen, Denmark.
  1. Corresponding author: Susanne Bügel, E-mail: shb@life.ku.dk.
  1. * Authorship equally shared.

Abstract

Objective High heat cooking of food induces formation of advanced glycation endproducts (AGEs), which are thought to impair glucose metabolism in type 2 diabetic patients. High intake of fructose might additionally affect endogenous formation of AGEs. This parallel intervention study investigated whether addition of fructose or cooking methods influencing the AGE content of food affect insulin sensitivity in overweight individuals.
Research design and methods Seventy-four overweight women were randomized to follow either a high- or low-AGE diet for 4 weeks, together with either fructose or glucose drinks. Glucose and insulin concentrations – fasting and 2-h after an oral glucose tolerance test – were measured before and after the intervention. Homeostasis model assessment of insulin resistance (HOMA-IR) and insulin sensitivity index (ISI0,120) were calculated. Dietary and urinary AGE concentrations were measured (LC-MS/MS) to estimate AGE intake and excretion.
Results When adjusted for changes in anthropometric measures during the intervention the low-AGE diet decreased urinary AGEs, fasting insulin, and HOMA-IR, compared with the high-AGE diet. Addition of fructose did not affect any outcomes.
Conclusions Diets with high AGE content may increase development of insulin resistance. AGEs can be reduced by modulation of cooking methods but is unaffected by moderate fructose intake.